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Uniform Asymptotic Technique for
Analyzing Wave Propagation in

Inhomogeneous Slab
Waveguides

HIROYOSHI IKUNO AND AKIRA YATA

Abstract —The guided modes of inhomogeneous dielectric slab wave-

gnides are analyzed by a uniform asymptotic tecfndque based on the related

equation method. This technique gives highfy accurate solutions in the

sense of asymptotic expansion. The afgorithm for calculating the guided

modes of slab wavegaides with an even polynomial refractive-index medkm

is presented. As an example, we calculate the third-order approximate

solutions for the guided modes in an analytic form. The results show that

the WKB sohstions for bigher order modes are more accurate than for the

lower order modes and the correction to the WKB solutions is significant

for the lower order modes. The numerfcaf resnlt for eigenvafues and modal

fields confirms that the third-order asymptotic sohrtion is accurate for all

the guided modes of the near-parabolic profile wavegnides and for higher

order modes in the case of the quasi-Gaussian profile.
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1. INTRODUCTION

R

ECENT ADVANCES of fabrication technology of
optical integrated circuits produce optical channel

waveguides and directional couplers with a great variety of

inhomogeneous media including those with a Gaussian

distribution. A number of design theories have been pre-

sented to evaluate the propagation characteristics of such

inhomogeneous slab waveguides [ 1]–[4]. Although the WKB

method is useful for analyzing these waveguides, it fails in

the case of relatively strong inhomogeneity [4]. Consider-

able efforts have been made to overcome this drawback of

the WKB method [5]-[9].

In this paper, we analyze the guided modes of wave-

guides with an even polynomial-profile medium. This pro-
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file describes a considerably general class of refractive-

index distributions such as the Gaussian profile. We adopt

a uniform asymptotic technique based on the related equa-

tion method [9] and derive a formula for calculating the

Nth-order correction to the WKB solutions: the propaga-

tion constants are obtained by solving the refined form of

the Bolu-Sommerfeld quantum condition, and the modal

fields are expressed in terms of the parabolic cylinder

functions [10]. As a practical example, we calculate the

third-order asymptotic solution in an analytic form. The

accuracy and the convergence of the approximate solution

are examined numerically in the near-parabolic profile case

and in the quasi-Gaussian profile case.

II. FORMULATION OF PROBLEM

We consider the two-dimensional waveguides, in which

the refractive-index is represented as

n(x) =no(l-h(x))”z

h(x) =(gx)2– a2(gx)4+a3(gx)6+ . . .

+(–l)~+1a~(gx)2~ (1)

where nO is the refractive-index at x = O, g is a positive

constant, and aM’s are constants such that h(x) increases

monotonically. Here we use a Cartesian coordinate system

(x, y, z). The guided waves propagate along the z-axis

according to exp( j( u t –&z)), where /3~ are propagation

constants and m is the mode index (WI = 0,1,2,0. .,). The

fields of the TE modes and the TM modes can be de-

scribed in terms of the y-components of the electric field Ey

and the magnetic field Hy, respectively. Now we put Ey

and HY in the form

EY(x, z,t) = ~~(x)exp(j(ut –/?~z)), for TE-modes

(2a)

and

HY(x, z,t)=n(x)@~(x)exp (j(ut –&z)),

for TM-modes

&=k(l-bm)”2, k = (27r/A)n0 (2b)

where A is the wavelength in vacuum. Then, the transverse

mode functions Om( x ) satisfy the following equation:

@;(x) +k2Q(x)@m(x)=0

Q(x) =b~-h(x)

{

for TE-modes

+ ~(1/k2)(l - h(x)) l/2((1-h(x))-’i2)”, (3)

for TM-modes

where the prime denotes the derivative with respect to x.

The problem of determining the guided modes is to calcu-

late the eigenvalues b~ and the modal fields ~~(x).

III. ALGORITHM OF THE NTH-ORDER APPROXIMATE

SOLUTION

Let us construct the formula for obtaining the Nth-order

approximate solution of (3). It is intended that such a

solution is in the refined form of the Bohr–Sommerfeld

auantum condition for the eixenvalue and in the form of a

parabolic cylinder function for the modal field. The con-

struction method adopted here is based on the repeated use

of the Langer transformation [9]. Setting@, = @~ in (3), we

have

~z d2
_#dWI)+QI(Wh(W1)=O

1

Q,(w,)=%-~(wl)

(o, for TE-modes

+ I–c’(l–h (w, )) ’’Z:((l –h(w, ))-l”), (4)
1

\ for TM-modes

where w, = gx and c = g/k. First, we transform WPto WP+ 1

(p=l,2, ””” ,N ) through the relations

for w,s & (5a)

where

IP = (4/@p{~dwP (5b)
o

[

Q1(w1), forp=l

QP(wP)= l;., (1- W;)- C2~p-l(Wp), (5C)

forp=2,3,. ... N

(+)1’2-$((~)-’’2).(5d)~]-l(wp)= dw

In (5), QP( WP) is continuously differentiable at WP= gP,

where &p is a simple zero of QP( WP). Transformation (5)

maps the regions Os WPs &P and 4P < WPinto O < WP+1s 1

and 1< WP+,, respectively. Next, we consider the following

transformation:

@P+AwP~l)=(dwP/dwp+l) -“’@p(w,)

(P=1,2,. o., N). (6)

The application of the transformation (6) together with (5)

N times to (4) yields

~2 d2
~@N+l(wN+l)+ (zi(l-wi+l)

N+

–C2RN(WN+1 )) I$N+l(WN+I) =0. (7)

By neglecting RN in (7) (see (12)), we have

~2 d2
—C#IN+l(WN+ l)+~j(l -Wj+I)I$N+I(WN+l) ‘o.
dw;+ ,

(8)

Provided that the mode index m is related to IN as

IN=(21n+l)c (9)

solution of (8) vanishing at w~+ I = & m can be expressed

in terms of the parabolic cylinder functions [10] as

@N+ I(WN+I)=~. (mWN+l). (lo)
.
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Then, from (6) and (10), the mode function of (4) can be where ~~~) ( w, ) is expressed in the form

represented as
o(~)(w,) = (dwN+,m (w,)/dW,)- “2

(

– 1/2

$’1 = ~fi, (~%+1/~%)
)

%(-w.+,). (11)

“~M(_WN+@I)). (lab)

This is a uniform asymptotic technique for calculating the

~th-order approximate eigenvalues b~N) and modal fields
Equations (9) and (11) are the approximate solutions of ~(~) .

(4). Now, let us estimate the errors of (9) and (11) in (4).
m the sense of asymptotic expansion. Using these

Here we consider only even polynomial refractive-index
re~ults, we can evaluate the propagation characteristics of

the guided modes in even polynomial refractive-index media
profiles. Then we have the estimate of RN (see the Appen- as preciselY as one wishes

dix) such that In an actual calculation, we obtain b~~) and w~+ I( w, ) in

RN= 0(c2N-1) (12) (14b) in the power series of c with the help of a family of
relatlons (Al). The terms up to a2N_, in (1) are exactly

where 0(. ) means an O-symbol [1 1]. From (5), (7), (9), considered in the Nth-order approximate solution.

(1 1), (12), and (Al), we get the Nth-order approximate It is noted that (13b) is the refined form of the Bohr–

solution of (3): for eigenvalues we have Sommerfeld quantum condition. The WKB solution of (3)

is the first-order approximate solution in this formulation
bm = b~N)+O(c2N) (13a) and is represented by b$) and O:). Transformation (5) is

where b~N) is the solution of
recursive. So we can solve (13) and (14) by using an

analytic algebraic computer code.

(1/6)~$u~-dw~ = (m + 1/2)(n/2) (13b)
IV. EXAMPLE

and for the modal fields we obtain As an example, we calculate the third-order asymptotic

solution. In this case, the terms up to as are considered.

@m(W) =@jN)(w*)+o(62N-’) (14a) The computer code is described by BASIC of HP 9845B.

The results are as follows:

b~)=sf-(:+:(+))a'(s`)2-[:a`-+a'+(:a`-:a`l($)l(s`)3

[– -

375 165 35

(–

1707 ‘ 885 245 1
—

1024 a: – 256 a2a3 + 128a4+ 512 –10az – 128a2a3 + 64 a4 ~

(–

1539 945 315

– )( )11(sE)4+1024a; – 256a2a3 + 128a4 ~

[

10689 d 3129 z 393 2 189 63—
16384 a2 – 2048 a2a3 + 1024a3 + 256 a2a4 – 256 as

+ 89165 a4 29555 ‘

(

4145 z 2205

– 1(-)

945 1

m 2– 1024 aza3 + 512 a3 + 128 a2a4 – 128a5 S2

+ 305141

(

117281 19277 z 10521 5607 1

][ )17Gmra%izira~a’+ mzia’ ‘73Ta2a4-23Fa5 3 ‘s’)’

h )

0((6), for TE-modes

+

(SJ 3 (

j (s~)’+(z–saz) ~ (s6) + ~–~a2–~ai+~a3 )(+++)(sd4

[(25 261 29 35 255 s 345 35

1( )

1
+ ~–—

32
a2— —a~+~a3— — —

16 64 az + 32 a~a3 –~a4 ~

(

109 1239 91 175 1005 1455 175
+— —a2——a~+~a3—~ai+

8–32 16
~aza3 — —a4

4 1( )1
j- (s05

+0(<6), for TM-modes

(SC) ’’2W4 = dOW, + d,W: + dzw: + d,w: + d4w:

(15)

(16)
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with

[ (

91
do=l–~azs~– ~a~–~aq+ — 51

)( )1256abia3 ~
(s[)2

[– -

1731 45 35

(–

6093 1635— 455 1

)( )18192a; – 128 U2U3 + 256 ‘4+ 4096ai – 512 “a3 + ~a4 ~ (st)3

[

197725 0 13981 209 2 1617— 63
524288 ‘2 – 16384 aia3 + 1024U3 + 4096 U2U4 – 512as

(698497 ~ 29123 z 804’7 z 34923 1827 1——
+ 131072U2

– )(-)2048 U2U3+2048U3+ 4096 a2a4– 512 ‘5 ~’

+ 709267UA 72751

(

847 27279 63——
131072 2 4096 a;a3+ 128a:+ 2048 a2a4–~a5 )( )1

$ (s6)4

[(+ 25 981 639 z 135 2541 1575 35 1———
16 256 U2–512U2+ 32 ‘3– 1024 U;+ )( )256 a2a3–%a4 ~

+ ~_1827

(

441 ‘ 135 3003 ~ 2205 35

4
~az—— — —

256U2+ 8 ‘3– 512U2+
—a2a3— ya4

128 )( )1
~ (M)4+O(C5), for TM-modes

1

(–

17 5

“=-Ta’- )192 U%3U3 ‘c

[–

509 55 35

(–

935 295 105 1— ——

- )( )14096a; 256 U2U3+384U4+ 2048ai–256a2a3+ 128a4 ~ ‘s6)2

[

3653 4217 z 131 63 21—— ——
16384a: 8192 U2U3+ 1024 U:+256U2U4–256U5

(

76121 ‘ 27275 1975 z 2275 525 1——
+ 32768U2 – )( )14096 a:a3+ 1024U3+ 512 a2a4–256a5 ~ (sf)3

(0(64), for TE-modes

((+7
~–2a2–$a~+~a3

)( )
+ (s,)2

(

25 87 133 .’ 145 153 ‘3 55 35

+ ~–~az– 192U2+ 48 ‘3– 128a2+~a2a3–fia4 )( )
~ (SKI)3+O(C4), for TM-modes

(–

11 1

)(

103 15 7——— _
‘2=– 384UZ 12U3 2048 ‘Z – )128a2a3+%a4 ‘c

[

19579 16537 2 661 763 21—
196608 a: – 61440 a2a3 + 7680a; + 5120 a2a4 – 320 ‘5

(52667 57221 z 361 z 7833 21 1

)( )1+98304a; –30720a2a3+480a3+ 5120U2U4 20U5 ~
—— (st)2

(0(,3), for TE-modes

((+5 177 235 31 77 79 7

7– ~a2+~ai+~a3–— 256UZ + ~a2a3 – ~a4 )( )
~ (SC)2+O(C3), for TM-modes

(–35 1 1

‘3=– 3072a% a2a3+%a4 )

(

1183 10049 ‘ 241 169—
36864a: – 92160 a2a3 + 5760a;+ 1920 a2a4 )

–&a5 SC+ O(C2)

( 1693 607 23 21

‘4=– 294912 a$–23040a;a3+ )
—a a –-!-a +O(c)

1440a; +640 2 4 20 5



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TEC~IQUES VOL. 30, NO. 11, NOVEMBER 19821962

Fig.

X1ET2

‘“’”r

1’
~.

.. . . . . ..TtlB

:4.005

---- . . . . . . .. TM’
-----’

-----. +~

TE I

,.,,5G
123

Order N

(a)

TMs
—TE5

Tfl 1
~TEI

TnO
TEe

,
123

Order N

(b)

1. Convergence check ofnem-pflabofic profile casewhen$c=O.Ol.
.88 —

123
(a) Elgenvalues bjN). (b) Relative amplitude of modal fields Order N
qp(vk )\@m=. (a)

TM5
— TU

TMI
~ TZ1

TMe
-‘ TEe

1

123

Order N

(b)

Fisz. 2. Convergence check ofauasi-Gaussim urofile casewhen$c=O.Ol.

where s=2m+l. On the other hand, in the process of the ~a) Eigenval~es b#’). (b) ’Relative am~litude of modal fields

@~O’)(&)/Qma.
calculation of (15), we obtain the WKB solution

(
~a (SC)3– ~a~–bOJ=s~-~a2(sc)2- ~a~– 16 3

)(
375 165 35

256 U2U3 + 128 ‘4–)
(s6)4m

(

10689 3129 z 393 189U a——
16384a: 2048 a2a3 + )

~a~ (s~)5

:([;),for’’-mo~;::::: )(+)(s,)4
(sc)+(2-3a2) ~ (SE) + ~-~a2-~a~+~a3

[(-

+ 25 261 29 35 255 g 345 35 1
—a2— —a~+—a3— — —

8–32 16 4 64 1( )
az+ 32 a2a3 –~a4 >

( 9
+ –2+6a2–~a~

)( )1
$ (st)’+ O(c’), for TM-modes. (17)

Comparison of(15) and (17) indicates that in the Nth-order

approximate solution, the terms 1/s1(2 < i < 2N – 2) are

added to the WKB solution. The WKB solution is very

accurate for higher order modes, but not so accurate for

the lower order modes, as expected. As a matter of course,

the second-order approximate eigenvalues b:) are in agree-

ment with the previous ones [7], [8]. Moreover, we calculate
bf3) by using the formula given in [6] and obtain (15) again.m

V. CONVERGENCE CHECK

Here we examine the convergence of the approximate

eigenvalues and modal fields of the guided modes of wave-

guide with a profile:

h(x)= K(l-exp(-(2A/K) (x/D)2)), 2ASKS1

(18)

where A is the relative refractive-index difference between

the guiding layer and the cladding, and D is the core width.

We can realize the near-parabolic profile with K = 1 and

the Gaussian profile with K = 2A. We approximately trace

the profile (18) by setting aM = (l/M !)(l/K~- 1, and g

= ~/Din (l). There exist the guided modes for b~ < 2A.

On the other hand, from (15) we have sc = O(b~). Then the

range of sc to be considered is O < sc = 0(2 A).

As a numerical check, we compute the third-order ap-

proximate eigenvalues and modal fields with A = 0.01 in

two cases; the near-parabolic profile and the quasi-

Gaussian profile considering the terms up to a5. Fig. 1
gives bj~) and @~N)(&)/@~=(m = O, 1,5. N= 1,2,3) for

TE modes and TM modes in the case of the near-parabolic

profile when sc = 0.01, where @~= is the maximum ampli-

tude of @~~)(w1 ). This figure shows that the calculated

values of all the guided modes are converging. The third-

order approximate solution is very accurate. The WKB

solution for eigenvalues of lower order modes is signifi-

cantly corrected. For modal fields, the WKB solution

coincides with the refined solution with six significant

figures. Fig. 2 gives b~N) and @~~)(&)/@~= for TE

modes and TM modes in the case of the quasi-Gaussian

profile when sc = 0.01. This figure indicates that the WKB

solution for higher order modes is more accurate than that

for lower order modes. The correction to the WKB solution
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TABLE I
EIGENVALUES bm IN THE CASES OF THE NEAR-PARABOLIC PROFILE (UPPER)

AND THE QUASI-GAUSSIAN PROFILE (LOWER)

mode SE= .003 SE. .O1 SC=.02

TEO
.2996624579 XI O-z .99624845 .lo-~ .1984988 xlo-~

.2830 XLo
-2

.8 .10
-2

-2 -2 -1

TMO
.3005638110 xIO 1.00629883 ~lo .2025394 ~lo

.2838
-2

.10 .8 Xlo
-2 —

.299812460’3 .10
-2

.9979152165 xIO
-2

TE ~
.199165504 XIO-l

-2 -2 -1
.290524 ~lo .892 ~ 10 .16 ~lo

.2999126111 x1O
-2

.9990319066 x1O
-2

TM
.199624430 xlO-l

1 -2 -2 -1
.290603 x10 .892 X1O lb .10

.2998298166 x1O
-2

TE5
.9981080673 X10-2 .1992426494 xlO-l

.29139235 .10
-2

.90139 .10
-2

.L58 x 10
-1

.2998372658 x1O
-2

.9981911267 x1O
-2

.1992760403 x1O
-1

Tt45
.29139821

-2
.10 .!70142 ~lo

-2
.158 ,10

-1

is significant for lower order modes. This figure also shows

that a higher order asymptotic solution is required for

analyzing lower order modes. Lastly, we examine the sig-

nificant figures of the calculated eigenvalues. Table I shows

that the significant figures in the case of the near-parabolic

profile are more than seven.

VI. CONCLUSION

We present the algorithm for calculating the propagation

constants and the modal fields of the guided modes in even

polynomial refractive-index media. The algorithm pre-

sented here leads to a highly accurate solution in the sense

of the asymptotic expansion. The third-order approximate

solutions of the propagation constants and the field distri-

butions are derived in analytic form. The convergence and

the accuracy of solution for the guided modes of wave-
guides with the near-parabolic profile and the quasi-

Gaussian profile are examined numerically. It is found that

the third-order asymptotic solution is accurate for the

guided modes of the near-parabolic profile waveguides and

for higher order modes in the case of the quasi-Gaussian

profile. In order to evaluate lower order modes in complex

profiles such as the Gaussian profile, we need to calculate a

higher order asymptotic solution.

The analysis of the guided modes of cladded inhomoge-

neous slab waveguides with uniform outer layers is carried

out in a companion paper [12].

APPENDIX

ESTIMATE OF llN

In the case of the even polynomial refractive-index pro-

file, from (9) or (13), we have b~ = 0(6). So we get $;=
~(b~) = o(t) and wl = O(&l) = 0(61/2). From the above

fact and (5), we get a family of relations

ew, =w2+f1wj+glw~ +.”.

w2=w3+f2w: +g*w: +”””
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

(Al)
Wp=wp+, +fpw;+l+gpw;+l+ ““”
. . . . . . . . . . . . . . . . . . . . . . . . . . . .

wN=wN+l +fNw;+l+g#;+l+ ““”

where e = O(c- 1/2), fp=O(C2P-1), and g, = fl(c”) (p=
1,2,”0 ,, N).

It is noted that e,&, and gP are expressed in the power

series of c. Substituting (Al) into (5d), we have the estimate

of RN such that

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

RN= O(C2N-1) (A2)
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