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Uniform Asymptotic Technique for
Analyzing Wave Propagation in
Inhomogeneous Slab
Waveguides

HIROYOSHI IKUNO anp AKIRA YATA

 Abstract —The guided modes of inhomogeneous dielectric slab wave-
guides are analyzed by a uniform asymptotic technique based on the related
equation method. This technique gives highly accurate solutions in the
sense of asymptotic expansion. The algorithm for calculating the guided
modes of slab waveguides with an even polynomial refractive-index medium
is presented. As an example, we calculate the third-order approximate
solutions for the guided modes in an analytic form. The results show that
the WKB solutions for higher order modes are more accurate than for the
lower order modes and the correction to the WKB solutions is significant
for the lower order modes. The numerical result for eigenvalues and modal
fields confirms that the third-order asymptotic solution is accurate for all
the guided modes of the near-parabolic profile waveguides and for higher
order modes in the case of the quasi-Gaussian profile.

Manuscript received March 4, 1982; revised April 28, 1982.
The authors are with the Department of Information Engineering,
Kumamoto University, Kumamoto 860, Japan.

I. INTRODUCTION

T ECENT ADVANCES of fabrication technology of
optical integrated circuits produce optical channel
waveguides and directional couplers with a great variety of
inhomogeneous media including those with a Gaussian
distribution. A number of design theories have been pre-
sented to evaluate the propagation characteristics of such
inhomogeneous slab waveguides [ 1]-[4]. Although the WKB
method is useful for analyzing these waveguides, it fails in
the case of relatively strong inhomogeneity [4]. Consider-
able efforts have been made to overcome this drawback of
the WKB method [5]-[9].
In this paper, we analyze the guided modes of wave-
guides with an even polynomial-profile medium. This pro-
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file describes a considerably general class of refractive-
index distributions such as the Gaussian profile. We adopt
a uniform asymptotic technique based on the related equa-
tion method [9] and derive a formula for calculating the
Nth-order correction to the WKB solutions: the propaga-
tion constants are obtained by solving the refined form of
the Bohr—Sommerfeld quantum condition, and the modal
fields are expressed in terms of the parabolic cylinder
functions [10]. As a practical example, we calculate the
third-order asymptotic solution in an analytic form. The
accuracy and the convergence of the approximate solution
are examined numerically in the near-parabolic profile case
and in the quasi-Gaussian profile case.

II. FORMULATION OF PROBLEM

We consider the two-dimensional waveguides, in which
the refractive-index is represented as

n(x)=no(1-h(x))"”

h(x) = (gx)2~ az(gx)4+ a3(gx)6+ -

+(=D""ay (g)™ (1)

where n, is the refractive-index at x =0, g is a positive
constant, and a,,’s are constants such that 4(x) increases
monotonically. Here we use a Cartesian coordinate system
(x, y,z). The guided waves propagate along the z-axis
according to exp( j(wt — f8,,z)), where B, are propagation
constants and m is the mode index (m=0,1,2,--,). The
fields of the TE modes and the TM modes can be de-
scribed in terms of the y-components of the electric field £

) Y
and the magnetic field H), respectively. Now we put E,
and H, in the form

E,(x,z,t)=®,(x)exp(j(wt—B,z)), for TE-modes

(2a)

and
H,/(x,z,t)= n(x)®,(x)exp(j(wt—B,z)),
for TM-modes
B,=k(1—5,)"%  k=Qn/A)n, (2b)

where A is the wavelength in vacuum. Then, the transverse
mode functions @,,(x) satisfy the following equation:

0, (x)+k*Q(x)®,,(x) =0
by — h(x)
0, for TE-modes

+{ = (1/k2) (1= h(x)) (1R (x) ")
for TM-modes

Q(x)=

3)

where the prime denotes the derivative with respect to x.
The problem of determining the guided modes is to calcu-
late the cigenvalues b, and the modal fields ®,,(x).

1II. ALGORITHM OF THE NTH-ORDER APPROXIMATE

SOLUTION

Let us construct the formula for obtaining the Nth-order
approximate solution of (3). It is intended that such a
solution is in the refined form of the Bohr—-Sommerfeld

quantum condition for the eigenvalue and in the form of a

1959

parabolic cylinder function for the modal field. The con-
struction method adopted here is based on the repeated use
of the Langer transformation [9]. Setting ¢, = ®,, in (3), we
have

d 2¢1(W1)+Q1(W1)¢1(W1) 0

Q,(w,) =b,,— h(w,;)
0, for TE-modes
a -
—e(1- h(Wl))lﬂ;v?((l —h(w)) 1/2),

for TM-modes

where w; = gx and € = g/k. First, we transform w, to w,
(p=12,---,N) through the relations

T = [, O v

for 0 < wp<£p

4)

Ip_/;pr\/szﬂ"ld +1 f Qp(w
forw,>¢, (5a)
where
1,= (4/m) [0, (w,) d, (5b)
Q1(w1), forp=1
0,(w,) = 2~1(1"W1;2)_‘2Rp—1(wp)> (5¢)

forp=2,3,---,N

aw,_, )1/2—‘11 (dwpvl
aw, dwpz aw,

~1/2
Rp_l(wp)=( ) ) (5d)

In (5), Q,(w,) is continuously differentiable at w, =§,,
where 5 is a simple zero of Q, (w,). Transformation (5)
maps thc regions 0 < w, \é and£ <w, into 0 W, <1
and 1 <w, ., respectively. Next we cons1der the following
transformatlon

¢p+1(wp+1) = (dwp/dwp+l)_l/2¢}’(wp)

The application of the transformation (6) together with (5)
N times to (4) yields

2 d?

awy 1.

¢N+1(WN+1)+(I]\21(1_ Wz%f+1)

- €2RN(WN+1))¢N+1(WN+1) =0. (7)
By neglecting R, in (7) (see (12)), we have
d2

‘2_2_¢N+1(WN+1)+II\2/(1
awy

€

— Wi 1) S (Wys1) =0
(8)
Provided that the mode index m is related to I as
I,=(2m+1)e (9)

solution of (8) vanishing at wy, ;= £ oo can be expressed
in terms of the parabolic cylinder functions [10] as

¢N+1(WN+1)=Dm(V4m+2WN+1)- (10)
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Then, from (6) and (10), the mode function of (4) can be
represented as

N -1/2
¢1=( ]._.[l(dwp+1/dwp)) Dm(v4m+2WN+l)' (11)

p=
Equations (9) and (11) are the approximate solutions of
(4). Now, let us estimate the errors of (9) and (11) in (4).
Here we consider only even polynomial refractive-index
profiles. Then we have the estimate of R, (see the Appen-

dix) such that
Ry=0(eV) (12)

where O(+) means an O-symbol [11]. From (5), (7), (9),
(11), (12), and (Al), we get the Nth-order approximate
solution of (3): for eigenvalues we have

b, = b +0() (13a)

where b is the solution of
(1/€) [ O doy = (m +1/2)(w/2) - (130)

and for the modal fields we obtain

@, (w) =" (w)+0("1) (14a)
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where ©{V)(w),) is expressed in the form
OV (w;) = (dWN+1(W1)/dW1)_1/2

D, (Vadm +2wy, (w)). (14b)

This is a uniform asymptotic technique for calculating the
Nth-order approximate eigenvalues b{Y) and modal fields
®M in the sense of asymptotic expansion. Using these
results, we can evaluate the propagation characteristics of
the guided modes in even polynomial refractive-index media
as precisely as one wishes.

In an actual calculation, we obtain »{¥ and wy, (w,) in
(14b) in the power series of € with the help of a family of
relations (Al). The terms up to a,,_, in (1) are exactly
considered in the Nth-order approximate solution.
It is noted that (13b) is the refined form of the Bohr-—
Sommerfeld quantum condition. The WKB solution of (3)
is the first-order approximate solution in this formulation
and is represented by b{" and ®{". Transformation (5) is
recursive. So we can solve (13) and (14) by using an
analytic algebraic computer code.

IV. ExaMPLE

As an example, we calculate the third-order asymptotic
solution. In this case, the terms up to a5 are considered.
The computer code is described by BASIC of HP 9845B.
The results are as follows:

3 31 , [17 5 67 , 25 ) 1 3
3) — 1= et 202 2_ = —
b = se (8+8(S2>)a2(se) [64 ;T 3—1—(64 6% (sz)](se)
375 o 165 35 (1707 . 885 245 )i
102492~ 256 %2% T 1o %4 T\ 512 2T 1ag e T Teg Y\ 2
1539 , 945 315 1
+( 1024 %2~ 256 929 T 18 )( )}( 2
_[1oe8y , 3129 , 393 , 189 63
16384 92 ~ 2048 2% T 102443 T 256 2% T 256 %%
+(89165 (29555 , 4145 , 2005 945 )(L
8192 727 1024 2% T s B T a8 2% T a8 s )\ 2
+(305141 o T8, 19277 , 10521 - 5607 )i (56’
16384 427 2048 29T 004 43T 256 P24 56 U5 )\ e ) V€
0(€®),  for TE-modes
+{ (1 ) 1 5 (21 45 9 , 45 11 4
(sz)(se) +(2—3a2)(-s—2)(se) +(?—?az-—zaz-l-—g—%)(?—ky)(se)

+(2_5_£ 229 .35 255 5 345 0B )L

8§ R 1N T g BT e 2T T g\ 2

(109 1239 9L, 175 1005 . 1455 175 )_1_ (s¢)°
8 32 92776927 T4 BT g 2T T3y T T A [V

+0(€%),  for TM-modes

12
(s€)"*w, = dgw, + dw? + dw? + dyw] + d w?

(15)
(16)



5 1
IKUNO AND YATA: WAVE PROPAGATION IN INHOMOGENEQOUS SLAB WAVEGUIDES

with
3 77 5 91 5
dy=1- T 2sc—[512a%-—§a3+(—2%a§~—a3)( )](se)

1731 o 45 L35 +(6093 5 1635 0+ 35 (LY (ser

8192 ¢ 128 2% ¥ 25694+ | 3006 %2 T 512 2% T 256% || 7 )| (s

197725 4 13981 o 209 , 1617 63

52428892 7 16384 2% T 1024 %5 T 4006 9244 T 31295
+(698497 §_ 20023 8047, 34923 1827 ) 1

131072 2048 ¢ 2048 43 " 3096 Y294~ 512 % )| 2

0967 o T2 . 84T a2+ 17209 63 1 4
+( 131072 %2~ 4096 “2%* 1284 2043 “2“4—?“5)(3”(“)

{ 0(¢%), for TE-modes

21 21 45 , 45 1 3
€ +( — g, —==ad?+—a )(—) s€
)() 682 %Rt 1%)| 7))
N (___38_1 639 ,, 135 2541 , 1575 Ea)i

16 256“27 52?2 T3 BT 10247 T 256 2% T g Y| 2

19 1827 441 , 135 3003 , 2205 35 ) 1 4 5 )
+<T_W“2_ﬁ“2 g B3~ 515 92t g 42t~ T 4s = (se)"+0(¢), for TM-modes
1 17 5

dl_—gaz—(ma%—%c%)é‘c
35 935 , 295 105 1

[ 4096 256“2“3+384“4+(2048 T 256 %% o8¢ )(7)](“)

3653 o 4207 o 131 o 63 21

1638492 7 8192 2% T 1024 3 T 7569294 T 256 %

121 o 29205 1975 o 2275 525 )L 3
+(32768 4096 ° 1024% T 512 92% ™ 35695 )| 13 ) |(5€)

O(e*),  for TE-modes
+

( a2+15 )( )(se)

2587, 133, 145 153, S5 __gg)i 3 . ]
+(24 HBeT 10T g BT s T 162s T 3% (s€)’+0(e*),  for TM-modes
(11 )(1033 REIN a)se

384 ¢ 12 2048 2 T 128 %29 F 96 %4

19579 , 16537 , . 661 , 763 a1
[196608 61440 2% * 7680 % * 5120 %2% " 320

52667 , 57221 361 , 7833 21 1 2
+ 4 ala,+=—a’*+ -——=a,a,— =—a )(—)] S€
(98304 307202% T 3504 T 5120 %% ~ 20% )| 7 )| (59)

0 ( ¢’),  for TE-modes

177 L 235 , 31 7 5 T 7 )(1) > ;
2t oay— ey =a, |l = |(se)”+0(e), for TM-modes
t 3ttt T 256 % T g4 T 3% sz( ) +o(€)
1

(3072 “2“3 —18“4)

1183 10049 241 169 9
(36864 2~ 92160 2% 5760“§+ 1920“2"4 160“5)“+0(‘2)

1693 , 607 23 )

(294912 ~ 23080 %%+ 1430 ” 640“2"4 20“5 +0(e)

1961
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Fig. 1. Convergence check of near-parabolic profile case when se = 0.01.
(a) Eigenvalues b{M). (b) Relative amplitude of modal fields
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Fig. 2. Convergence check of quasi-Gaussian profile case when s¢ = 0.01.
(a) Figenvalues b{". (b) Relative amplitude of modal fields

(N)
calculation of (15), we obtain the WKB solution O 05)/ P
3 2 (17 375 165
b'("‘)=“'§“2(“)"(a i 16"3)(“) (1024 12524t 128 (o)’
10689 , 3129 , 393 , 189 63 ) s
_(16384a2 5048 4393+ 702493 * 256 %294 ~ 23695 |(5¢)
0(¢%),  for TE-modes
+ 21 45 9 , 45 1 4
|5+ - 3a2)( - J(s9) +(?—?a2-—za2+—8—~a3)(;)(se)
+(2_5_@ 29,35 255 , 345 35a)i
§ LT TeRT BT T b T g4\ 2

—+-(—2+6a2 - —g—a%
Comparison of (15) and (17) indicates that in the Nth-order
approximate solution, the terms 1/5'(2 <i<2N —2) are
added to the WKB solution. The WKB solutlon 18 very
accurate for higher order modes, but not so accurate for
the lower order modes, as expected. As a matter of course,
the second-order approximate cigenvalues b(® are in agree-
ment with the previous ones [7], [8]. Moreover, we calculate
b by using the formula given in [6] and obtain (15) again.

V. CONVERGENCE CHECK

Here we examine the convergence of the approximate
eigenvalues and modal fields of the guided modes of wave-
guide with a profile:

h(x)= K(l—exp(—(2A/K)(x/D)2)), 2A<K <1

(18)
where A is the relative refractive-index difference between
the guiding layer and the cladding, and D is the core width.
We can realize the near-parabolic profile with K =1 and
the Gaussian profile with K = 2A. We approximately trace
the profile (18) by setting a,, = (1/M)1/K¥~") and g

)(F)](“)SJF 0(e),  for TM-modes.

(17)

=V2A /D in (1). There exist the guided modes for b,, < 2A.
On the other hand, from (15) we have se = 0(b,,). Then the
range of se to be considered is 0 < se = 0(24).

As a numerical check, we compute the third-order ap-
proximate eigenvalues and modal fields with A =0.01 in
two cases; the near-parabolic profile and the quasi-
Gaussian profile considering the terms up to as. Fig. 1
gives b and M (Vse)/®,, (m=0,1,5. N=1,2,3) for
TE modes and TM modes in the case of the near-parabolic
profile when se = 0.01, where @, is the maximum ampli-
tude of ®(w,). This figure shows that the calculated
values of all the guided modes are converging. The third-
order approximate solution is very accurate. The WKB
solution for eigenvalues of lower order modes is signifi-
cantly corrected. For modal fields, the WKB solution
coincides with the refined solution with six significant
figures. Fig. 2 gives b and & (Vse)/®,,, for TE
modes and TM modes in the case of the quasi-Gaussian
profile when se = 0.01. This figure indicates that the WKB
solution for higher order modes is more accurate than that
for lower order modes. The correction to the WKB solution
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TABLE I
FIGENVALUES b,, IN THE CASES OF THE NEAR-PARABOLIC PROFILE (UPPER)
AND THE QUASI-GAUSSIAN PROFILE (LOWER)

mode s€=.003 s€=.01 s€=.02

® .2996624579 x107° 99624845  x1072 1984988 x107%
O 2830 x1072 .8 x1072 _

™ 3005638110 x107 % 1.00629883 %1077 2025394 x107*
O 2838 x1072 8 072 —

o .2996124609 x107° .9979152165 x10™° .199165504 x107"
L 290524 x107* .892 107 16 x107t

- .2999126111 X107 .9990319066 1072, .199624430 x107%
L 290603 x1072 .892 x1072 .16 x1071

TE .2998298166 107 ,9981080673 *107° 1992426494 x107t
9139235  x107? .90139 x107? .158 x107

™ .2998372658 X107 9981911267 X102 11992760403 X107
> 29139821  x1072 -2 !

90142 x10 158 %10~

is significant for lower order modes. This figure also shows
that a higher order asymptotic solution is required for
analyzing lower order modes. Lastly, we examine the sig-
nificant figures of the calculated eigenvalues. Table I shows
that the significant figures in the case of the near-parabolic
profile are more than seven.

V1. CONCLUSION

We present the algorithm for calculating the propagation
constants and the modal fields of the guided modes in even
polynomial refractive-index media. The algorithm pre-
sented here leads to a highly accurate solution in the sense
of the asymptotic expansion. The third-order approximate
solutions of the propagation constants and the field distri-
butions are derived in analytic form. The convergence and
the accuracy of solution for the guided modes of wave-
guides with the near-parabolic profile and the quasi-
Gaussian profile are examined numerically. It is found that
the third-order asymptotic solution is accurate for the
guided modes of the near-parabolic profile waveguides and
for higher order modes in the case of the quasi-Gaussian
profile. In order to evaluate lower order modes in complex
profiles such as the Gaussian profile, we need to calculate a
higher order asymptotic solution.

The analysis of the guided modes of cladded inhomoge-
neous slab waveguides with uniform outer layers is carried
out in a companion paper [12].

APPENDIX
ESTIMATE OF R

In the case of the even polynomial refractive-index pro-
file, from (9) or (13), we have b, = O(¢). So we get £ =
O(b,,)=0(¢) and w, = O(£,) = O('/?). From the above
fact and (5), we get a family of relations

ewy,=wy + fiw3 + gws + - -
3 5
Wy =wy + fowy + gows + - -

_ 3 5
wp—wp+,+];wp+,+gpwp+1+

_ 3 5
Wy =Wy + [yWyer + 8vWaa T

1963

where e = 0(e™'/?), f,=0(¢*”7"), and g, = O(e*#) (p=
1,2,--,N).

It is noted that e, f,, and g, are expressed in the power
series of e. Substituting (A1) into (5d), we have the estimate
of R, such that

Ry=0(e7) (A2)
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